A Closed-Form Bayesian Inferences for Multinomial Randomized Response Model

نویسندگان

  • Tae-Young Heo
  • Jong-Min Kim
چکیده

In this paper, we examine the problem of estimating the sensitive characteristics and behaviors in a multinomial randomized response model using Bayesian approach. We derived a posterior distribution for parameter of interest for multinomial randomized response model. Based on the posterior distribution, we also calculated a credible intervals and mean squared error (MSE). We finally compare the maximum likelihood estimator and the Bayes estimator in terms of MSE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Bayesian Inference for Poisson and Multinomial Log-linear Models

Categorical data frequently arise in applications in the social sciences. In such applications,the class of log-linear models, based on either a Poisson or (product) multinomial response distribution, is a flexible model class for inference and prediction. In this paper we consider the Bayesian analysis of both Poisson and multinomial log-linear models. It is often convenient to model multinomi...

متن کامل

Data Augmentation, Frequentist Estimation, and the Bayesian Analysis of Multinomial Logit Models

This article introduces a generalization of Tanner and Wong’s data augmentation algorithm which can be used when the complete data posterior distribution cannot be directly sampled. The algorithm proposes parameter values based on complete data sampling distributions of convenient frequentist estimators which ignore some information in the complete data likelihood. The proposals are filtered us...

متن کامل

A Multivariate Bayesian Claim Count Development Model With Closed Form Posterior and Predictive Distributions

We present a rich, yet tractable, multivariate Bayesian model of claim count development. The model combines two conjugate families: the gamma-Poisson distribution for ultimate claim counts and the Dirichlet-multinomial distribution for emergence. We compute closed form expressions for all distributions of actuarial interest, including the posterior distribution of parameters and the predictive...

متن کامل

On the development of a semi-nonparametric generalized multinomial logit model for travel-related choices

A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007